NVIDIA GPU: Difference between revisions

From HPCWIKI
Jump to navigation Jump to search
No edit summary
 
Line 654: Line 654:
|Ada Lovelace
|Ada Lovelace
|18176
|18176
|568
|fourth-generation 568
|142
|third-generation
|
142
|
|No NVLink
VR ready
vGPU ready
|PCIe 4.0 x16
|48GB GDDR6 with ECC
|48GB GDDR6 with ECC
|
|
|960 GB/s
|960 GB/s
|
|Active
|
|1x PCIe CEM5 16-pin
|300 W
|300 W
|Jan 2023
|Jan 2023

Latest revision as of 11:31, 8 September 2024

HPCMATE provides all level of GPU model as air-cooling or liquid-cooling version for any type of server or workstation.

Nvidia GPU tips and tricks

  • TRX - RTX stands for real-time ray tracing
  • GeForce vs Quadro - In general, GeForce cards have less computing power than Quadro cards. Quadro cards simply have more computation and memory than GeForce cards. So if we are training a neural network, rendering an animated film, or running exhaustive CAD/CAE applications , that extra memory is extra welcome

GPU Tenser performance notes for RTX 4090

According to this thread NVIDIA looks cut the tensor FP16 & TF32 operation rate in half, resulting in a 4090 with even lower FP16 & TF32 performance than the 4080 16GB. This may have been done to prevent the 4090 from cannibalizing the Quadro/Tesla sales. So if you are choosing GPUs, you can choose the 4090 for memory, but lower tensor performance than the 4080 16GB. eventhough 4090 has more than twice the ray tracing performance of the 4080 12GB.

RTX 4090 RTX 4080 16GB RTX 4080 12GB RTX 3090 Ti
non-tensor FP32 tflops 82.6 (206%) 48.7 (122%) 40.1 (100%) 40 (100%)
non-tensor FP16 tflops 82.6 (206%) 48.7 (122%) 40.1 (100%) 40 (100%)
Tensor Cores 512 (152%) 304 (90%) 240 (71%) 336 (100%)
Optical flow TOPS 305 (242%) 305 (242%) 305 (242%) 126 (100%)
tensor FP16 w/ FP32 accumulate TFLOPS ** 165.2 (207%) 194.9 (244%) 160.4 (200%) 80 (100%)
tensor TF32 TFLOPS ** 82.6 (207%) 97.5 (244%) 80.2 (200%) 40 (100%)
Ray trace Cores 128 (152%) 76 (90%) 60 (71%) 84 (100%)
Ray trace TFLOPS 191 (245%) 112.7 (144%) 92.7 (119%) 78.1 (100%)
POWER (W) 450 (100%) 320 (71%) 285 (63%) 450 (100%)

NVIDIA GPU Architecture

nvcc sm flags and what they’re used for: When compiling with NVCC[1],

  • the arch flag (‘-arch‘) specifies the name of the NVIDIA GPU architecture that the CUDA files will be compiled for.
  • Gencodes (‘-gencode‘) allows for more PTX generations and can be repeated many times for different architectures.

Matching CUDA arch and CUDA gencode for various NVIDIA architectures

Series Architecture

(--arch)

CUDA gencode

(--sm)

Compute Capability Notable Models Supported CUDA version Key Features
Tesla Tesla 1.0, 1.1, 2.0, 2.1 C1060, M2050, K80, P100, V100, A100 First dedicated GPGPU series
Fermi Fermi sm_20 3.0, 3.1 GTX 400, GTX 500, Tesla 20-series, Quadro 4000/5000 CUDA 3.2 until CUDA 8 First to feature CUDA cores and support for ECC memory
  • SM20 or SM_20, compute_30 – GeForce 400, 500, 600, GT-630. Completely dropped from CUDA 10 onwards.
Kepler Kepler sm_30

sm_35, sm_37

3.2, 3.5, 3.7 GTX 600, GTX 700, Tesla K-series, Quadro K-series CUDA 5 until CUDA 10 First to feature Dynamic Parallelism and Hyper-Q
  • SM30 or SM_30, compute_30 Kepler architecture (e.g. generic Kepler, GeForce 700, GT-730). Adds support for unified memory programmingCompletely dropped from CUDA 11 onwards.
  • SM35 or SM_35, compute_35 Tesla K40. Adds support for dynamic parallelism. Deprecated from CUDA 11, will be dropped in future versions.
  • SM37 or SM_37, compute_37 Tesla K80. Adds a few more registers. Deprecated from CUDA 11, will be dropped in future versions, strongly suggest replacing with a 32GB PCIe Tesla V100.
Maxwell Maxwell sm_50,

sm_52, sm_53

5.0, 5.2 GTX 900, GTX 1000, Quadro M-series CUDA 6 until CUDA 11 First to support VR and 4K displays
  • SM50 or SM_50, compute_50 Tesla/Quadro M series. Deprecated from CUDA 11, will be dropped in future versions, strongly suggest replacing with a Quadro RTX 4000 or A6000.
  • SM52 or SM_52, compute_52 Quadro M6000 , GeForce 900, GTX-970, GTX-980, GTX Titan X.
  • SM53 or SM_53, compute_53 Tegra (Jetson) TX1 / Tegra X1, Drive CX, Drive PX, Jetson Nano.
Pascal Pascal sm_60,

sm_61, sm_62

6.0, 6.1, 6.2 GTX 1000, Quadro P-series CUDA 8 and later First to support simultaneous multi-projection
  • SM60 or SM_60, compute_60 – Quadro GP100, Tesla P100, DGX-1 (Generic Pascal)
  • SM61 or SM_61, compute_61– GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030 (GP108), GT 1010 (GP108) Titan Xp, Tesla P40, Tesla P4, Discrete GPU on the NVIDIA Drive PX2
  • SM62 or SM_62, compute_62 – Integrated GPU on the NVIDIA Drive PX2, Tegra (Jetson) TX2
Volta Volta sm_70,

sm_72 (Xavier)

7.0, 7.2, 7.5 Titan V, Tesla V100, Quadro GV100 CUDA 9 and later First to feature Tensor Cores and NVLink 2.0
  • SM70 or SM_70, compute_70 – DGX-1 with Volta, Tesla V100, GTX 1180 (GV104), Titan V, Quadro GV100
  • SM72 or SM_72, compute_72 – Jetson AGX Xavier, Drive AGX Pegasus, Xavier NX
Turing Turing sm_75 7.5, 7.6 RTX 2000, GTX 1600, Quadro RTX CUDA 10 and later First to feature Ray Tracing Cores and RTX technology
  • SM75 or SM_75, compute_75 – GTX/RTX Turing – GTX 1660 Ti, RTX 2060, RTX 2070, RTX 2080, Titan RTX, Quadro RTX 4000, Quadro RTX 5000, Quadro RTX 6000, Quadro RTX 8000, Quadro T1000/T2000, Tesla T4
  • Turing GPU
Ampere Ampere sm_80,

sm_86, sm_87 (Orin)

8.0, 8.6 RTX 3000, A-series CUDA 11.1 and later Features third-generation Tensor Cores and more
  • Ampere GPU
  • SM80 or SM_80, compute_80 – NVIDIA A100 (the name “Tesla” has been dropped – GA100), NVIDIA DGX-A100
  • SM86 or SM_86, compute_86 (from CUDA 11.1 onwards) Tesla GA10x cards, RTX Ampere – RTX 3080, GA102 – RTX 3090, RTX A2000, A3000, RTX A4000, A5000, A6000, NVIDIA A40, GA106 – RTX 3060, GA104 – RTX 3070, GA107 – RTX 3050, RTX A10, RTX A16, RTX A40, A2 Tensor Core GPU
  • SM87 or SM_87, compute_87 (from CUDA 11.4 onwards, introduced with PTX ISA 7.4 / Driver r470 and newer) – for Jetson AGX Orin and Drive AGX Orin only

Devices of compute capability 8.6 have 2x more FP32 operations per cycle per SM than devices of compute capability 8.0. While a binary compiled for 8.0 will run as is on 8.6, it is recommended to compile explicitly for 8.6 to benefit from the increased FP32 throughput.

Lovelace Ada Lovelace[2] sm_89 8.9 GeForce RTX 4070 Ti (AD104)

GeForce RTX 4080 (AD103)

GeForce RTX 4090 (AD102)

Nvidia RTX 6000 Ada Generation (AD102, formerly Quadro)

Nvidia L40 (AD102, formerly Tesla)

CUDA 11.8 and later

cuDNN 8.6 and later

  • Fourth-Gen Tensor Cores increasing throughput by up to 5X, to 1.4 Tensor-petaFLOPS using the new FP8 Transformer Engine (like H100 model)
  • Third-generation RT Cores have twice the ray-triangle intersection throughput, increasing RT-TFLOP performance by over 2x
  • The new RT Cores also include a new Opacity Micromap (OMM) Engine and a new Displaced Micro-Mesh (DMM) Engine. The OMM Engine enables much faster ray tracing of alpha-tested textures often used for foliage, particles, and fences. The DMM Engine delivers up to 10X faster Bounding Volume Hierarchy (BVH) build time with up to 20X less BVH storage space, enabling real-time ray tracing of geometrically complex scenes
  • Shader Execution Reordering (SER) technology dynamically reorganizes these previously inefficient workloads into considerably more efficient ones. SER can improve shader performance for ray tracing operations by up to 3X, and in-game frame rates by up to 25%.
  • DLSS 3 is a revolutionary breakthrough in AI-powered graphics that massively boosts performance. Powered by the new fourth-gen Tensor Cores and Optical Flow Accelerator on GeForce RTX 40 Series GPUs, DLSS 3 uses AI to create additional high-quality frames
  • Graphics cards built upon the Ada architecture feature new eighth generation NVIDIA Encoders (NVENC) with AV1 encoding, enabling a raft of new possibilities for streamers, broadcasters, and video callers.
  • It’s 40% more efficient than H.264 and allows users who are streaming at 1080p to increase their stream resolution to 1440p while running at the same bitrate and quality.
  • SM89 or SM_89, compute_89 – NVIDIA GeForce RTX 4090, RTX 4080, RTX 6000, Tesla L40
Hopper[3] Hopper sm_90, sm_90a(Thor) 9.0 CUDA 12 and later TODO
  • SM90 or SM_90, compute_90 – NVIDIA H100 (GH100)
  • SM90a or SM_90a, compute_90a – (for PTX ISA version 8.0) – adds acceleration for features like wgmma and setmaxnreg. This is required for NVIDIA CUTLASS

NVIDIA GPU Models[4] [5]

Model Architecture CUDA Cores Tensor Cores RT Cores NVLink FF Memory Size MIG[6] Memory Bandwidth Thermal Power connector TDP Launch Date
H100-SXM5 Hopper

(GH100)

16896 4th Gen

528

No SXM5 80GB HBM3

50 MB L2 cache

7@10GB 3.35TB/s 700W Jan 2023
H100-PCIE[7][8][9] Hopper

(GH100)

14592 4th Gen 456 No NVLink

(600GB PCIe,

128GB Gen5)

PCIe

Gen 5 x16

80 GB HBM2

50 MB L2 cache

7@10GB 2TB/s Passive 300~350W

(configurable)

Jan 2023
H100 NVL[10] [11] Hopper

(P1010 SKU 210)

2 H100 PCIe boards that come already bridged together[12] NVLink

(600GB PCIe,

128GB Gen5)

2 x PCIe

Gen 5 x16

94 GB HBM3 14@12GB Passive One PCIe 16-pin auxiliary power connector (12v-2x6 auxiliary power

connector)

2x 300~450W (configurable) Sept 2023
Tesla C1060 Tesla 240 No No 4 GB GDDR3 102 GB/s 238W Dec 2008
Tesla K10 Kepler 3072 No No 8 GB GDDR5 320 GB/s 225W May 2012
Tesla K20 Kepler 2496 No No 5/6 GB GDDR5 208 GB/s 225W Nov 2012
Tesla K40 Kepler 2880 No No 12 GB GDDR5 288 GB/s 235W Nov 2013
Tesla K80 Kepler 4992 No No 24 GB GDDR5 480 GB/s 300W Nov 2014
Tesla M40 Maxwell 3072 No No 12 GB GDDR5 288 GB/s 250W Nov 2015
Tesla P4 Pascal 2560 No No 8 GB GDDR5 192 GB/s 75W Sep 2016
Tesla P40 Pascal 3840 No No 24 GB GDDR5X 480 GB/s 250W Sep 2016
Tesla P100[13][14] Pascal 3584 16GB CoWoS HBM2 at

732 GB/s or

12GB CoWoS HBM2 at

549 GB/

732.2GB/s

PCIe 3.0 × 16

Passive 250 W
Tesla V100 Volta 5120 640 Yes 16/32 GB HBM2 900 GB/s 300W May 2017
Tesla T4 Turing 2560 320 No 16 GB
A100 PCIe Ampere (GA100) 6912 432 Yes 40 GB HBM2 / 80 GB HBM2 1555 GB/s 250W May 2020
A100 SXM4 Ampere 6912 432 Yes 40 GB HBM2 / 80 GB HBM2 7 1555 GB/s 400W May 2020
A30[15] Ampere 7424 184 No 24GB HBM2 4 MIGs @ 6GB each

2 MIGs @ 12GB each

1 MIGs @ 24G

933GB/ 165W Apr 2021
A40[16] Ampere 10752 336 84 NVIDIA® NVLink® 112.5 GB/s

(bidirectional)3 PCIe Gen4: 64GB/s

PCI

4.4" (H) x 10.5" (L) dual sl, Passive

48 GB GDDR6 with ECC 696 GB/s 300W Apr 2021
A10[17] Ampere 10240 320 No 24 GB GDDR6 with ECC 600 GB/s 150W Mar 2021
A16[18] Ampere 5120 3rd Gen 160 40 PCIe Gen4 x16 64 GB GDDR6 800 GB/s 250W Mar 2021
A100 80GB Ampere

(GA100)

6912 432 - 80 GB HBM2e 7@

10GB

1935GB/s 300W Apr 2021
A100 40GB Ampere

(GA100)

6912 432 Yes 40 GB HBM2 7@

5GB

1555 GB/s 250W May 2020
A200 PCIe Ampere 10752 672 Yes 80 GB HBM2 / 160 GB HBM2 2050 GB/s 400W Nov 2021
A200 SXM4 Ampere 10752 672 Yes 80 GB HBM2 / 160 GB HBM2 2050 GB/s 400W Nov 2021
RTX A4500[19] Ampere 7,16 224 56 2Way (2slots or 3slots)

112.5 GB/s (bidirectional)

PCI Express Gen 4 x 16 20 GB GDDR6 with ECC 640 GB/s Active 1x 8-pin PCI 200W 2023
Quadro RTX 6000 Ada[20] Ada Lovelace 18176 fourth-generation 568 third-generation

142

No NVLink

VR ready vGPU ready

PCIe 4.0 x16 48GB GDDR6 with ECC 960 GB/s Active 1x PCIe CEM5 16-pin 300 W Jan 2023
A6000[21] Ampere 10752 336 84 48 GB GDDR6 768 GB/s 300 W
A5000[22] Ampere 8192 256 64 112.5 GB/s (bidirectional PCIe 4.0 x16 24 GB GDDR6 with ECC 768 GB/s 1x 8-pin PCIe 230W Apr 2021
RTX 5000 Ada[23][24] Ada Lovelace 12800 400 100 PCIe 4.0 x16 32GB GDDR6 with ECC 576GB/s 250W
NVIDIA RTX A5500[25] Ampere 10,240 320 (3rd Gen) 80 (2nd Gen) Low profile bridges connect two

NVIDIA RTX A5500 GPUs,

112.5 GB/s (bidirectional

PCI Express 4.0 x16 24 GB GDDR6 with ECC 768 GB/s 1x 8-pin PCIe 230 W
A4000[26] Ampere 6144 192 Yes 16 GB GDDR6 512 GB/s 140W Apr 2021
NVIDIA RTX 4000 SFF Ada Generation Ada Lovelace 6,14 192 (4th Gen) 48 (3rd Gen) 20 GB 320 GB/
A3000 Ampere 3584 112 Yes 24 GB G
Titan RTX Turing 4608 576 Yes 24 GB GDDR6 672 GB/s 280W Dec 2018
GeForce RTX 4090 Ada Lovelace 16384 512 Yes, 128 24 GB GDDR6X 21.2Gbps 450W
GeForce RTX 3090 Ti Turing 10752 336 84 24 GB GDDR6X 21.2Gbps 450W
GeForce RTX 3090 Turing 10496 328 Yes 24 GB GDDR6X 936 GB/s 350W Sep 2020
GeForce RTX 3080 Ti Turing 10240 320 Yes 12 GB GDDR6X 912 GB/s 350W May 2021
GeForce RTX 3080 Turing 8704 272 Yes 10 GB GDDR6X 760 GB/s 320W Sep 2020
GeForce RTX 3070 Ti Turing 6144 192 Yes 8 GB GDDR6X 608 GB/s 290W Jun 2021
GeForce RTX 3070 Turing 5888 184 Yes 8 GB GDDR6 448 GB/s 220W Oct 2020
GeForce RTX 3060 Ti Turing 4864 152 Yes 8 GB GDDR6 448 GB/s 200W Dec 2020
GeForce RTX 3060 Turing 3584 112 No 12 GB GDDR6 360 GB/s 170W Feb 2021
Quadro RTX 8000 Turing 4608 576 Yes 48 GB GDDR6 624 GB/s 295W Aug 2018
Quadro RTX 6000 Turing 4608 576 Yes 24 GB GDDR6 432 GB/s 260W Aug 2018
Tesla L40[27] Ada Lovelace 18176 4th Gen 568 3rd Gen

142

No PCIe Gen4 x16: 64GB/s bidirectional 48GB GDDR6 with ECC No 864GB/s Passive 16-pin 300W Jan 2023
Tesla L40S[28] Ada Lovelace 18176 4th Gen 568 3rd Gen

142

No PCIe Gen4 x16: 64GB/s bidirectional 48GB GDDR6 with ECC No 864GB/s Passive 16-pin 350W 2023
Quadro RTX 5000 Turing 3072 384 Yes 16 GB GDDR6 448 GB/s 230W Nov 2018
Quadro RTX 4000 Turing 2304 288 Yes 8 GB GDDR6 416 GB/s 160W Nov 2018
Titan RTX (T-Rex) Turing 4608 576 No 24 GB 672 Gb/s 280 W
Titan V Volta 5120 640 12 GB HBM2 652.8 GB/s 250W Dec 2017
Tesla V100 (PCIe) Volta 5120 640 No 32/16 GB HBM2 900 GB/s 250W June 2017
Tesla V100 (SXM2) Volta 5120 640 No 32/16 GB HBM2 900 GB/s 300W June 2017
Quadro GV100 Volta 5120 640 No 32 GB HBM2 870 GB/s 250W Mar 2018
Tesla GV100 (SXM2) Volta 5120 640 No 32 GB HBM2 900 GB/s 300W Mar 2018
1998-01-01T00:00:00Z
2000-12-31T00:00:00Z
Fahrenheit
1999-01-01T00:00:00Z
2003-12-31T00:00:00Z
Celsius
2001-01-01T00:00:00Z
2003-12-31T00:00:00Z
Kelvin
2003-01-01T00:00:00Z
2005-12-31T00:00:00Z
Rankine
2003-01-01T00:00:00Z
2013-12-31T00:00:00Z
Curie
2006-01-01T00:00:00Z
2010-12-31T00:00:00Z
Tesla
2007-01-01T00:00:00Z
2013-12-31T00:00:00Z
Tesla 2.0
2010-01-01T00:00:00Z
2016-12-31T00:00:00Z
Fermi
2010-01-01T00:00:00Z
2013-12-31T00:00:00Z
VLIW Vec4
2010-01-01T00:00:00Z
2016-12-31T00:00:00Z
Fermi 2.0
2012-01-01T00:00:00Z
2018-12-31T00:00:00Z
Kepler
2013-01-01T00:00:00Z
2015-12-31T00:00:00Z
Kepler 2.0
2014-01-01T00:00:00Z
2017-12-31T00:00:00Z
Maxwell
2014-01-01T00:00:00Z
2019-12-31T00:00:00Z
Maxwell 2.0
2016-01-01T00:00:00Z
2021-12-31T00:00:00Z
Pascal
2017-01-01T00:00:00Z
2020-12-31T00:00:00Z
Volta
2018-01-01T00:00:00Z
2022-12-31T00:00:00Z
Turing
2020-01-01T00:00:00Z
2023-12-31T00:00:00Z
Ampere
2022-01-01T00:00:00Z
2023-12-31T00:00:00Z
Hopper
2022-01-01T00:00:00Z
2023-12-31T00:00:00Z
{"selectable":false,"end":"2027-12-31T00:00:00Z","height":"512px","start":"2005-01-01T00:00:00Z","showMajorLabels":false,"zoomable":false}

NVIDIA Features by Architecture[29]

NVIDIA GPU Architectures
AD102 GA102 GA100 TU102 GV100 GP102 GP100
Launch Year 2022 2020 2020 2018 2017 2017
Architecture Ada Lovelace Ampere Ampere Turing Volta Pascal Pascal
Form Factor SXM4/PCIe SXM2/PCIe SXM/PCIe
TDP 400W 300W 300W
Node TSMC 4N SAMSUNG 8N TSMC 12nm TSMC 12nm TSMC 16nm
CUDA Cores 18432 10752 4608 5120 3840
Tensor Cores 576 Gen4 336 Gen3 576 Gen2 640
RT Cores 144 Gen3 84 Gen2 72 Gen1
Memory Bus GDDR6X 384-bit GDDR6X 384-bit GDDR6 384-bit HBM2 3072-bit GDDR6X 384-bit

NVIDIA Grace Architecture

NVIDIA has announced that they will be partnering with server manufacturers such as HPE, Atos, and Supermicro to create servers that integrate the Grace architecture with ARM-based CPUs. These servers are expected to be available in the second half of 2023, by then HPCMATE starts to offer those products through local and global partners.

Architecture Key Features
Grace CPU-GPU integration, ARM Neoverse CPU, HBM2E memory
900 GB/s memory bandwidth, support for PCIe 5.0 and NVLink
10x performance improvement for certain HPC workloads
Energy efficiency improvements through unified memory space

Reference

  1. https://arnon.dk/matching-sm-architectures-arch-and-gencode-for-various-nvidia-cards/
  2. https://en.wikipedia.org/wiki/Ada_Lovelace_(microarchitecture)
  3. https://www.nvidia.com/en-us/data-center/h100/
  4. https://www.nvidia.com/content/dam/en-zz/Solutions/gtcs22/design-visualization/quadro-product-literature/rtx-6000-l40-linecard-nvidia-us-2653097-r7-web.pdf
  5. https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/rtx/quadro-ampere-linecard-us-nvidia.pdf
  6. https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
  7. https://www.nvidia.com/content/dam/en-zz/Solutions/gtcs22/data-center/h100/PB-11133-001_v01.pdf
  8. https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
  9. https://www.aspsys.com/wp-content/uploads/2023/09/nvidia-h100-datasheet.pdf
  10. https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/h100/PB-11773-001_v01.pdf
  11. https://www.aspsys.com/wp-content/uploads/2023/09/nvidia-h100-datasheet.pdf
  12. https://www.anandtech.com/show/18780/nvidia-announces-h100-nvl-max-memory-server-card-for-large-language-models
  13. https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
  14. https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/NV-tesla-p100-pcie-PB-08248-001-v01.pdf
  15. https://www.nvidia.com/content/dam/en-zz/Solutions/data-center/products/a30-gpu/pdf/a30-datasheet.pdf
  16. https://images.nvidia.com/content/Solutions/data-center/a40/nvidia-a40-datasheet.pdf
  17. https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/datasheet-new/nvidia-a10-datasheet.pdf
  18. https://images.nvidia.com/content/Solutions/data-center/vgpu-a16-datasheet.pdf
  19. https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/rtx/nvidia-rtx-a4500-datasheet.pdf
  20. https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/proviz-print-rtx6000-datasheet-web-2504660.pdf
  21. https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/proviz-print-nvidia-rtx-a6000-datasheet-us-nvidia-1454980-r9-web%20(1).pdf
  22. https://nvdam.widen.net/s/wrqrqt75vh/nvidia-rtx-a5000-datasheet
  23. https://www.nvidia.com/en-us/design-visualization/rtx-5000/
  24. https://resources.nvidia.com/en-us-design-viz-stories-ep/rtx-5000-ada-datasheet?lx=CCKW39&contentType=data-sheet
  25. https://www.nvidia.com/content/dam/en-zz/Solutions/gtcs22/rtx-a5500/nvidia-rtx-a5500-datasheet.pdf
  26. https://www.nvidia.com/content/dam/en-zz/Solutions/gtcs21/rtx-a4000/nvidia-rtx-a4000-datasheet.pdf
  27. https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/support-guide/NVIDIA-L40-Datasheet-January-2023.pdf
  28. https://resources.nvidia.com/en-us-l40s/l40s-datasheet-28413
  29. https://videocardz.com/newz/nvidia-details-ad102-gpu-up-to-18432-cuda-cores-76-3b-transistors-and-608-mm%C2%B2